top of page

Geometry & Trigonometry

Black Diamond

ANGLES

Example 1) How to use a protractor to measure angles

Step 1) Find the vertex and put the mid-point of the protractor there.

image.png
image.png

Step 2) Find where the angle arm reaches

Types of Angles:

Types of Angles

Right / 90* angle

image.png

Acute Angle
(less than 90*)

Obtuse Angle
(Greater than 90*)

Reflex Angle 
Exterior Angle

Practice

Practice PDFs available for download: 

Makeup Sponges

POLYGONS

Polygon: a multiple-sided shape

  • a closed shape

  • sides are stright line segments

  • only 2 sides meet at a vertex

image.png

Non-Polygons: 

Regular Polygon: all sides are equal and all angles equal:

image.png
image.png

Irregular Polygon: Does not have all sides equal and all angles equal: 

image.png

Convex Polygon: Has all angles less than 180*: 

image.png

Concave Polygon: Has at least one angle greater than 180*: 

image.png

Perimeter of Polygons

Perimeter

Perimeter: is the distance around a polygon

P = sum of all side lengths

image_edited.jpg

8cm

6cm

Perimeter = 8 + 7 + 6
                  = 21cm

7cm

Practice

Practice PDFs available for download: 

Math and Geometry Tools

AREA

Area of Rectangles

Area of Rect

Area = (Length) x (width)

Formula:

Example 1) Calculate the area of the following rectangle: 

Area = x 9 

= 27m 

2

3m

9m

Here we say, "twenty-seven meters squared."
We say squared because it lets everyone know our answer is 2 dimensional (both length & width) to cover space

Practice

Practice PDFs available for download: 

Area of Triangles

Example 1) Calculate the area of the following triangle: 

Formula:

A = 

Base x Height

2

image_edited.png

6cm

10cm

8cm

Step One: Fill in the formula with what you know; base is 8cm, height is 6cm

8cm x 6cm

2

Step Two: Complete the top part of the equation (8*6)

8cm x 6cm

= 48cm

Step Three: Complete the top part of the equation (8*6)

48cm

2

= 24cm

2

Practice

Practice PDFs available for download: 

Surface Area

1) Rectangular Prisms

SA of rect, tri & Cyl

Example) Find the surface area of this rectangular prism:

image.png

Step 1) Draw the net of the shape: 

image.png

Step 2) Notice there are 3 pairs of congruent rectangles within the prism: 

  • A&D are congruent rectangles

  • B&E are congruent rectangles

  • ​D&F are congruent rectangles

  • This means you can solve for the surface area a shorter way: 
    Surface area = 2 x (area of rectangle A) 
                         + 2 x (area of rectangle B)
                         + 2 x (area of rectangle C)

Step 3) Solve area of each rectangle: 
Rectangles A&D = 2(3 x 5) = 30cm
Rectangles B&E = 2(8 x 3) = 48cm
Rectangles C&F = 2(8 x 5) = 80cm

image_edited_edited.png
image_edited_edited.png

Step 4) Add up areas of all the rectangles calculated in step 3: 
    A&D: 30cm
    B&E:  48cm
+ C&F:  80cm

2

2

2

image_edited_edited_edited.png

We say the surface area of the rectangular prism is: 

158cm

2

2) Surface Area of Triangular Prisms

Example) Find the surface area of this triangular prism:

image.png

Step 1) Draw the net of the shape: 

image.png

Step 2) Notice some sides of the triangular prism are congruent:  

  • A&C are congruent rectangles

  • D&E are congruent triangles​

  • B does not have any congruent shapes

  • This means you can solve for the surface area a shorter way: 
    Surface area = 2 x (area of rectangle A) 
                         + 2 x (area of triangle D)
                         +  area of rectangle B

image_edited_edited.png

Step 3) Recall the formula for area of a triangle and solve area of each triangle & rectangle: 
Rectangles A&C = 2(20 x 9) = 360cm
Triangles D&E = 2(15 x 5) = 75cm

Rectangle B = (15 x 20) = 300cm

2

image_edited_edited.png

Formula for area of a triangle:

2

A = 

Base x Height

image_edited_edited_edited.png

Step 4) Add up areas of all the shapes calculated in step 3: 
    A&C: 360cm
    D&E:  75cm
+       B:  300cm

2

2

2

735cm

2

We say the surface area of the triangular prism is: 

3) Surface Area of Cylinders

Example) Find the surface area of this cylinder:

image.png

Step 1) Draw the net of the shape: 

image.png

Step 2) Notice some sides of the cylinder are congruent:  

  • Two circles

  • One rectangle

  • This means you can solve for the surface area a shorter way: 
    Surface area = 2 x (area of one circle) 
                         +  area of the rectangle

image_edited_edited.png

Step 3) Recall the formula for area of a circle and solve area of each circle & rectangle: 
Circles = π x 8

2

image_edited_edited.png

= 201.06 x 2circles
= 402.12

Area of Rectangle = circumference x height

= 2 x π x 8  x 11

Formula for area of a circle:

A =

 π x radius

2

Formula for circumference of a circle:

C =

2πr

= 552.92

image_edited_edited_edited.png

Step 4) Add up areas of all the shapes calculated in step 3: 
    Two Circles:         402.12cm
  One Rectangle: + 552.92cm

2

2

955.04cm

2

We say the surface area of the cylinder is: 

Balance

VOLUME

Volume of Rectangular Prisms

Volume is the three dimensional space a figure takes up. 
             Calculated in cubic units

Length x Width x Height

Formula:

Example 1) Calculate the volume of the following rectangular prism: 

2

image.png

V = l x w x h

   = 11cm x 4cm x 5cm

   = 44cm  x 5cm

   = 220cm

3

Here we say, "two-hundred twenty centimeters cubed."
We say Cubed because it lets everyone know our answer is 3 dimensional (length & width & height) to fill 3D space

Practice

Practice PDFs available for download: 

Volume of Triangular Prisms

Example) Find the volume of this triangular prism:

image.png

Base Area x Length

Volume Formula:

2

Step 1) Solve the base area of the shape: 
Recall the formula for the area of a triangle & Solve. 
Area of Triangle = 8 x 3   = 12cm
 

2

Formula for area of a triangle:

2

A = 

Base x Height

image_edited_edited_edited.png

Step 2) Multiply the base by the length of the shape:  
Base x Height = 12cm  x 10cm​​

2

= 120cm

3

We say the volume of the triangular prism is: 

**Note the exponent is "3" indicating a "cubed unit" and a measure of volume not surface area.

Volume of Cylinders

image.png

Base Area x Length

Volume Formula:

Volume of a cylinder is V = base area x height
                                        = area of a circle x height
                                        = 
πr  x h

2

So, a formula for the volume of a cylinder is V πr  x h, 
where "r" is the radius of its base, and "h" is its height

2

image_edited_edited_edited.png

Example) Solve the volume of this cylinder:

Solution: 
Volume of a cylinder = base area x height
                                 = 154 x 24 

= 3696cm

3

image_edited_edited_edited.png
image.png
Illustrated Shapes

TRIGONOMETRY

Types of Triangles

6 Types of Triangles:

Based on Angles:

Right Triangle: one angle is 90 degrees

Acute Triangle: All angles are less than 90 degrees

 Obtuse Triangle: One angle is greater than 90 degrees

Based on Side Lengths:

Equilateral Triangle: all sides are equal & all angles are equal

Isosceles Triangle: 2 sides are equal & 2 angles are equal

Scalene Triangle: no sides nor angles are equal

image.png

Practice

Practice PDFs available for download: 

Pythagorean Theory

image.png
image.png

Notice a relationship between the area of each square attached to the triangle: 25 = 9 + 16

In a right triangle, the area of the square on the hypotenuse is equal to the sum of the areas of the squares on the legs. 

This relationship is called the Pythagorean Theory

The formula is written: a  + b  = c

2

2

2

Where a is one leg, is one leg, and c is the hypotenuse of a triangle. 

Example) Find the length of the hypotenuse 

image.png

C

Step 1) Use the Pythagorean Theory: a  + b  = c

2

2

2

4  + 4  = c

2

2

2

16 + 16 = c

2

32 = c

2

image_edited_edited_edited_edited.png

The area of the square on the hypotenuse is 32. 
So, the side length of the square is: c =

image.png

Step 2) Use a calculator. Solve for

C = 5.6569

image.png
image_edited_edited_edited_edited.png

So, the hypotenuse is approximately    5.7cm.  

The Tangent Ratio

image.png
image.png

We name sides of right triangles in relation to one of its acute angles. 

Example 1) Using the Tangent Ration to solve ANGLES

image_edited_edited_edited.png

Determine the angles of G and J. 

Step 1) Write the Tan Ratio Formula:

image.png
image.png
image.png
image.png
image.png

Step 2) Use a calculator.      = 0.8

4

5

image_edited_edited_edited.png

Type tan   (0.8) into your calculator
=38.7

-1

Since all triangles' interior angles add up to 180°, we can subtract H (90°) and G (38.7°) from 180° to find the last angle.

180° - (90° + 38.7°â€‹â€‹â€‹

128.7° 

180° - 128.7° = 51.3° 

image_edited_edited_edited_edited.png

So, G = 38.7°

and J = 51.3°

Example 2) Using the Tangent Ration to solve Opposite SIDE LENGTHS

image_edited_edited_edited.png

Determine the length of AB.

Step 1) Write the Tan Ratio Formula:

Tan (angle) = ----------------------------

length of opposite 
length of adjacent

image.png
image_edited_edited_edited.png

Given C (30°), the opposite length is side AB
and the adjacent length is side BC

image.png
image.png
image_edited_edited_edited.png

Step 2) Solve this equation for AB.

image_edited_edited_edited.png
image_edited.png

Multiply both sides by 10. 
we write: 10 x tan(30
°)

Step 3) Type 10 x tan(30°) in your calculator
=5.77

image_edited_edited_edited.png

So, AB is approximately  5.8cm  long

When to use Sine, Cosine, Tangent

The Primary Trigonometric Ratios

image.png
image.png

How do they work? 
The values of the sine, and cosine compare the side lengths of a triangle. 
For example, if Sin A = 0.5, that means the opposite side length to A is 0.5 times the length of the hypotenuse: 

image.png

If Cos A = 0.7, that means the adjacent side length to A is 0.7 times the length of the hypotenuse:

image.png

Example 1) Using the Sine Ratio to solve an Angle

image_edited_edited_edited.png

a) Identify the side D and the side adjacent to D.
b) Determine D using the Sine Ratio.

image_edited.jpg
image.png

Step 1) Identify the hypotenuse, adjacent and opposite sides of the triangle:

  • DF is the Hypotenuse

  • EF is the Opposite of D

  • DE is the Adjacent of D
     

Step 2) Solve for Sin D using the Sine Ratio: 

image.png

Sin D = 0.38

EF is opposite D
DF is the hypotenuse

Use a calculator, use sin   to determine its measurement of D in degrees

-1

Type Sin   (0.38) into your calculator
=22.3

-1

So, D = 22.3°

Example 2) Using the Cosine Ratio to solve for an Angle

image_edited_edited_edited.png

a) Determine the measure of G

Step 1) Identify the hypotenuse, adjacent and opposite sides of the triangle:

  • GH is the Hypotenuse

  • KH is the Opposite of G

  • GK is the Adjacent of G

image.png
image.png

GK is adjacent G
GH is the hypotenuse

Cos G = 0.428

Use a calculator, use cos   to determine its measurement of G in degrees

-1

Type Cos   (0.428) into your calculator
=64.6

-1

So, G = 64.6°

Trigonometry Finale

bottom of page